Anomalous surface compositions of stoichiometric mixed oxide compounds.

نویسندگان

  • Sergiy V Merzlikin
  • Nikolay N Tolkachev
  • Laura E Briand
  • Thomas Strunskus
  • Christof Wöll
  • Israel E Wachs
  • Wolfgang Grünert
چکیده

Surface-oxide films are present in many types of oxidecontaining materials, such as grain boundaries in ceramics, interfaces in ceramic-ceramic and metal-oxide systems, and affect their materials and transport properties. In heterogeneous catalysis, the properties of the outermost surface layer are of prime importance because they control the catalytic performance. Although bulk mixed-metal oxide catalysts are widely used in industrial selective oxidation processes, not much is known about their outermost surface composition. Models based on surfaces derived from a truncation of the bulk structure have dominated discussion on catalytic reaction mechanisms and active sites (reviewed, for example, in Ref. [6]). This view has been questioned by several recent studies reporting the surface enrichment and depletion phenomena in solid-oxide solutions (e.g., CoxNi1 xO ), the identification of TiO2-rich overlayers on reconstructed SrTiO3(001) model surfaces, [8] and evidence for the formation of amorphous oxide overlayers in which there is surface enrichment of one of the components under selective oxidation reaction conditions. However, the development of realistic concepts on reactant activation, surface reaction mechanisms, and the design of advanced catalytic materials are still hampered by the lack of detailed knowledge of the surface composition and structure of bulk mixed-metal oxides. For such studies, X-ray photoelectron spectroscopy (XPS) with laboratory sources is of limited value because its average sampling depth of 1–3 nm results in a signal where the outermost surface layer only contributes on the order of 30%. Synchrotron radiation allows for increasing the surface sensitivity of XPS by decreasing excitation and, hence, photoelectron kinetic energies. Exclusive information on the outermost surface layer, however, is only given by low-energy ion scattering (LEIS) because ions penetrating below the surface become largely neutralized. The surfaces of stoichiometric bulk mixed-metal molybdates and vanadates have also been characterized through their interactions with probe molecules, for example, CH3OH, [12–15] which allows CH3O* and intact CH3OH* intermediates on different surface cations to be discriminated by IR spectroscopy. For such materials, combined methanol chemisorption and oxidation kinetic studies suggested a strong surface enrichment of MoOx or VOx. [12,14,15] In methanol oxidation studies, similar catalytic turnover frequencies were found over bulk mixed-metal oxides and related supported metal oxides (e.g., Fe2(MoO4)3 and MoO3/Fe2O3), which supports the idea of surface MoOx enrichment of the bulk phases. These observations, however, are qualitative as exposed metal oxide ions of low catalytic activity would not be detected by the test reaction. Thus, we have undertaken a study of the outermost surface compositions of such compounds by LEIS and excitation-energy resolved XPS (ERXPS). The LEIS was applied in sputter series taking advantage of its destructive character, the ERXPS is a version utilizing information from different sampling depths. LEIS sputter series from stoichiometric bulk mixed oxides and related supported metal oxides are given in Figure 1 and [*] Dr. S. V. Merzlikin, Prof. Dr. W. Gr nert Lehrstuhl f r Technische Chemie, Ruhr-Universit t Bochum Postfach 102148, 44780 Bochum (Germany) Fax: (+49)234-32-14115 E-mail: [email protected] Homepage: http://www.techem.rub.de Dr. N. N. Tolkachev N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Moscow (Russia)

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface composition of MnxCo1-xO solid solutions by X-ray photoelectron and Auger spectroscopies

Auger and X-ray photoelectron spectroscopies have been used to study the surface composition of MnxCo1−xO (0 ≤ x ≤ 1) solid solutions. The polycrystalline materials, which are bulk homogeneous, present clear signs of deviation in surface composition at xbulk ≈ 0.2–0.4 to become surface-enriched in manganese at the expense of the cobalt. Whether on stoichiometric or cobalt-depleted surfaces, cob...

متن کامل

Chemical precipitation and characterization of multicomponent Perovskite Oxide nanoparticles – possible cathode materials for low temperature solid Oxide fuel cell

A set of multicomponent perovskite oxide nanoparticles based on La1-xSrxCo1-yFeyO3-δ(LSCF) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (LT-SOFC) as cathode materials.  The precursor materials used in this synthesis were lanthanum nitrate hexahydrate [La(NO3)<su...

متن کامل

Chemical precipitation and characterization of multicomponent Perovskite Oxide nanoparticles – possible cathode materials for low temperature solid Oxide fuel cell

A set of multicomponent perovskite oxide nanoparticles based on La1-xSrxCo1-yFeyO3-δ(LSCF) were prepared by a simple chemical precipitation method for application in low temperature solid oxide fuel cells (LT-SOFC) as cathode materials.  The precursor materials used in this synthesis were lanthanum nitrate hexahydrate [La(NO3)<su...

متن کامل

Surface composition of CoxNi1-xO solid solutions by X-ray photoelectron and Auger spectroscopies

The surface and bulk compositions of the mixed metal oxide CoxNi1−xO have been compared over the entire range of stoichiometry 0 ≤ x ≤ 1. The materials, which were formed as polycrystalline solid solutions, were shown to be well-ordered and homogeneous in the bulk, but tend to deviate in their surface composition for x 0.6. Auger and X-ray photoelectron spectroscopy gave comparable results and ...

متن کامل

Preparation of Alumina-Iron Oxide Compounds by Coprecipitation Method and Its Characterization

Fe2O3-Al2O3 compounds with different Fe/Al compositions were synthesized by coprecipitation (CP) method and calcined at 300°-1000°C. The formation of crystalline phases (e.g., maghemite, hematite), transformation temperature, specific surface area, lattice parameter, crystallite size, magnetic properties of iron oxide were all affected by the component ratio and thermal treatment.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Angewandte Chemie

دوره 49 43  شماره 

صفحات  -

تاریخ انتشار 2010